Available online at www.sciencedirect.com

Irrizrnzitionzl
scIENCE@DIREcT" Jeurnal oF
; Trizrmzal
— _ _ Seclances
ELSEVIER International Journal of Thermal Sciences 44 (2005) 374-381

www.elsevier.com/locatelijts

A new type of the boundary condition allowing analytical solution
of the thermal boundary layer equation

Igor V. Shevchuk

Ingtitut fir Luft- und Raumfahrttechnik, Technische Universitét Dresden, 01062, Dresden, Germany
Received 20 October 2004; accepted 20 October 2004

Abstract

Outlined in this paper is a new analytical form of a non-monotone distribution of the wall temperature allowing solving the thermal
boundary layer equation analytically. The thermal boundary layer equation in its integral form was solved for the temperature distribution at
the wall, with the Nusselt number being specified as a boundary condition in the form of an arbitrary power-law function. The new solution,
as illustrated on the example of a free rotating disk, can provide the analytical formulas for the wall temperature distributions having points of
a maximum or a minimum, while the traditionally used power-law distributions behave as the monotone functions. The new solution includes
earlier known power-law solutions for the wall temperature and the Nusselt number as a particular case. Numerical data computed using the
proposed solution are in a better agreement with known experimental data than the traditionally used power-law functions.
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1. Introduction The Nusselt number for boundary conditions (1), (2) is
featured by relation
At present, the most part of the approximate analytical NU — KlRe{lpR o Lm @)

solutions of the equations of laminar and turbulent thermal

boundary layers are known to be obtained using a power- Values of constants and exponents in Eq. (3) were ob-
law distribution for the wall temperature considered as a tained both experimentally and theoretically by Cardone
boundary condition of the problem. For a free rotating disk et al. [2], Dorfman [1], Elkins and Eaton [3], Owen and
taken in the present research as an example (see Fig. 1), th&ogers [4,5] etc. Currently known integral methods (laminar
power-law distribution of the wall temperature, as specified and turbulent flow) and self-similar solution (laminar flow)

by Dorfman [1] can be written in the following form state the following unique relation between the exponents in
Ea. (3)
_ — N
Ti Two = cor (1) m=2ng—1 (4)
AT = cfx™ (2

wherem = 0 for laminar flow, and most oftem = 0.6 for
wheren,, co, andcg are constants. If distribution (2) is valid  turbulent flow.

atanyx, thencg = 1. In the case if Eq. (2) holds only within ConstantK1 depends on the type of the boundary con-
a certain range of variation of the argumentthe constant  ditions at the wall, flow regime and Prandtl number. The
¢, can be chosen in an empirical way and differs from unity. most widely known and frequently cited solution for the con-
stant K, is that of Dorfman [1]. Corrected by Owen and

- Rogers [4] for turbulent flow it looks as
E-mail address: ivshevch@tfd.mw.tu-dresden.de (1.V. Shevchuk).

1 Fax: 49 (351) 463 38087, tel.: 49 (351) 463 38099. K1=0.0197n, + 2.6)*2Pr0® (5)

1290-0729/$ — see front mattét 2005 Elsevier SAS. All rights reserved.
doi:10.1016/j.ijthermalsci.2004.10.004



1.V. Shevchuk / International Journal of Thermal Sciences 44 (2005) 374-381 375
Nomenclature
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Fig. 1. Layout of the problem under investigation.

atng =0.8,m=0.6,n=1/7.

et al. [2], Elkins and Eaton [3], McComas and Hartnett [8],
Dorfman’s solution agrees well with early experiments of Northrop [9], Northrop and Owen [10], Popiel and Bogus-
Cobb and Saunders [6] and Nikitenko [7]. However, Eq. (5) lawski [11] fulfilled later for the values of, = —1,...,0
noticeably (in certain cases up to 14%) overpredicts results(i.e., at dAT /dx < 0). Shevchuk [12] has shown that Dorf-
of the more careful experimental investigations of Cardone man’s (1963) solution for the laminar flow
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Table 1
Values of constants in Egs. (3), (7) for turbulent flow in accordance with
Shevchuk [13]

Coefficient n=1/7 n=1/6.5 n=1/6
K3 0.0268 00306 00353
Ky 0.203 Q215 Q228
np= 0.4/(1—-Ky) 0.502 Q509 Q518
ng=m+1)/Gn+1) 0.8 0.789 Q778
m=1-n)/3n+1) 0.6 0.579 Q556
my=1+m 1.6 1579 1556
K1 = K»=0.308n, + 2)¥/?prt/2 (6)

is in the even worse agreement with the self-similar solu-
tion atn, = —1.5,...,0 for Pr =1, ..., 0.1; inexactitudes
of Eq. (6) reach 34..., 238% and increase with the decreas-
ing Prandtl number.

The remedy was found by Shevchuk [12,13], whose so-
lution (valid atPr < 1) is

4+ m -1
Ki=K3Pr| ——K 1—Ky)Pr'*r 7
1=K3 [2+m+n* v+ ( V) } (7
0.4435
K= 8
0.3486+ 2.002/(2 + 1)

Eq. (7) corresponds to turbulent flows, while Eq. (8) (pre-
sented here for the particular caseRof= 0.72) is valid for
laminar flows.

Numerical values of constants in Eq. (7) depending on
the exponent in the power-law approximation of the tem-
perature and velocity profiles (for details see Egs. (18), (19))

are documented in Table 1. Eq. (7) (at the standard valueg,, —

of n = 1/7) and (8) agree very well with known experi-
mental and theoretical data of Cardone et al. [2], Elkins and
Eaton [3], McComas and Hartnett [8], Owen and Rogers [4],
Popiel and Boguslawski [11], Shevchuk [12], for which the
boundary conditions (1) and (2) are valid.

Sometimes the wall temperature distributions cannot be
accurately described by analytical Egs. (1) and (2), as for ex-

ample, took place in experiments of Northrop [9], Northrop
and Owen [10].

Distributions of the Nusselt number obtained by these au-
thors also differ quite significantly from the values suggested
by Egs. (3), (5), (7) and experimental data of other authors.
The main feature of the experimental values far mea-
sured by Northrop [9], Northrop and Owen [10] is that they

clearly exhibit a weaker dependence on the radial coordinate

x, than that predicted by Egs. (3) and (4)yat 1/7.
Thus the aim of the present research was to find out,

whether another class of the analytical solutions can be de-Cr

rived, which can be in a good agreement with experimental
data of Northrop [9], Northrop and Owen [10] that do not
comply reasonably good with boundary conditions (1), (2)

and correspondent equations for the Nusselt number. Theny = %Rew(l-i-az)l/zprx

analysis below is performed in the general form suitable both
for laminar and turbulent flow, however comparisons of the
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2. Statement of the problem

We are looking here for an opportunity to find out an ap-
proximate analytical solution of the rotating disk heat trans-
fer problem for the case, where the exponent at variable
in Eq. (3) takes an arbitrary valug, = const, which is in
general different from % m

Nu = K1Rel®x" 9)

Most commonly the energy equation is solved for the
temperature distributions in the fluid (and for the Nusselt
numbers) at specified boundary conditions for the temper-
ature at the wall. We will refer in this paper to this type of
mathematical problems as direct ones. In order to derive an
expression for the temperature distribution at the wll,
which corresponds to Eg. (9), we will consider an inverse
mathematical problem in the sense that the energy equation
is to be solved foAT at a given boundary condition for the
Nusselt number in the form of Eq. (9).

Solution of the stated problem is performed using the in-
tegral method outlined in works of Shevchuk [12,13] and
Shevchuk et al. [14]. An integral equation of the thermal
boundary layer is

d _ _ NuU —
—|Re, Ky K,y AT | = — AT 10
dx[ CwO K H K ] Pr ( )
ParametersKy and K,, are defined by Owen and

Rogers [4] and Shevchuk [12,13] as
o0 o
[u-roa/ [(Tw -1 [ o dz} (12)
0 0
s
fv—r dz
wr
0
As suggested by Owen and Rogers [4,5], integral parame-
ters for the hydrodynamic part of the problem in the laminar

flow can be found via integration of the self-similar solution
for the free rotating disk

Kn=6861 (12)

1 1
Km=1 =Iloa=, «=0.8284 13
m OQOl(S( /U)l/Z OoOly o ( )
Io=05338 §=Cj, Cf=yRe"? (14)
Kb = I Re, "2 (15)
S = ARe;Y? = ARe, Y2
Ac = 061591+ o?) (16)
(17)

Choice of the value€; or y depends on the desired

newly obtained solution is made only for the turbulent flow accuracy of their determination (via integration) from the

most often occurring in technical applications.

self-similar profiles ofv, andv,. Since parameterd and
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K, are used in Eq. (9) as a product, chosen valuesjobr Taking into account Eq. (9) faxu and (23) fors, along with
y for laminar flow do not affect the subsequent transforma- relationRe,, = Re(pxz, one can obtain
tions (see Egs. (13)—(15)).

For turbulent flow, Shevchuk [13] used a power-law ~ S K1 lxmf; dx
model for the velocity and temperature profiles in the fol- [IN(Re,dKu Ky AT)] = P / 5 (27)

. r Km)/ x“Ky
lowing form %
(v — wr)/(—owr) =§" ParameterKy is specified by the model of Shevchuk
v/ (r) = £"tgp = a(1— §)%" (1g)  11213]

1 b

(T = T)/(Too — Ty) = £" (19)  Ku=y —xPrrd- Kv)b—; (28)

The power-law model used by Shevchuk [12,13] for the
Nusselt numbers is again Eq. (17), while the components of
the shear stresses and the Reynolds analogy parameter are

For turbulent flowby = b, = 1. For laminar flow, val-
ues ofby, by andn, depending only on the Prandtl num-
ber may be calculated using equations given in the work of

n1/2 Shevchuk [12] 61 = b2 = 1 also atPr = 1).
Twr = —QTug,  Tup=—Tu(l+a) (20) According to Owen and Rogers [4,5], the integral para-
Cr= c; 2/ mth Re;z’l/("“) (21) meterKy is equal to 0.3482 in the laminar flow (for turbu-
e . lent flow see Eq. (25)).
x=A""Prir (22) With allowance for the aforementioned relations for pa-

whereC,, =2.284-0.924/n,n, =0.4/(1- Kvy). InEq. (22) rameters in the right-hand side of Eq. (27), it is easy to see
both x andA are unknowns to be found from the solution of that
the thermal boundary layer equation.

The solution of Shevchuk [12,13] for the hydrodynamic X
parameters in the turbulent flow is

K1

=C mxfmfl, C., =
x ' A1+ ad) 2P

(29)

Apparently, solution (3) for the temperature distribu-

§=Cix", Cr= yRe;z"/@"*l) (23) tion (1), (2) takes place at} = my—m=%1my=14+m.
c Eq. (28) can be expressed using Egs. (29) in the following
7f = A Re,2/Gn+D form
_ ACRe(ZZn/(3n+1)x—4n/(3n+l) (24) Ky = ay, + bx™1 (30)
=1— = 1 b
Ky=1-DofAs,  Kp=ad =1 by=—Prr(d—Ky) Cy (31)
-1/2 b> by

Ac = K3(1+a?) (25)

o . Dividing numerator and denominator of the integrand in
We refer the reader'who is interested in formulas for . right-hand side of Eq. (27) by":, expressingk  from
the rest of constants in Egs. (2.3)_(25).t0 the work of Eq. (30) one obtains for the integral in the right-hand side of
Shevchuk [13] and references. Given= 1 in Egs. (23)- Eq. (27)
(25), one can obtainn = 0, with the exponent of the

Reynolds numbeRe, being equal te-1/2. Thus, Egs. (23)— 1

: - X dx 1 Ay + byx™i1
(25) formally generalize Eqgs. (13)-(16) obtained for the =
analogous parameters of the laminar flow. However, it J @sxx?+bx™ by(1—m3) ax + by
should be remembered that all constants for laminar flow g1
are determined namely by Eqgs. (13)—(16). _ |n[“* + bux™ }”*‘1"”9 32)
as + by
) ) One can also rewrite the left-hand side of Eq. (27) as fol-
3. Solution of theinverse problem lows
. .. . B . __ K 24+m-1

Taking derivative of the left-hand part of Eq. (10) and di- [In(Rew(SKHKmAT)]l _ In[AT HX } (33)
viding both sides of this equation i8e,, Ky K,, AT, one * Hy_q
c(?n deduce Substituting Egs. (32) and (33) into Eq. (26), one can ul-

< =1 Nu 1 timately obtain

—[In(RepdK g Ky AT)| = — ———— 26 y
a [M(Read K Kn AT)] = 5 Re,8K 1t Ko (26)

X (34)

kK 4
Kn } PT Ky b (1—m7)

Itis necessary to integrate Eq. (26) franto 1 (provided AT = [
KHx:l

thatx # 0 to avoid uncertainty in both sides of this equation).
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4. Passagetothelimiting caseof m} =1

Let us consider limit of Eq. (34) at} — 1 or, that is the
same, aly = 1 —m} — 0 . Utilizing the rule of L'Hospital,
one can obtain

as+byx™Y
ax+by In X

b*y _a* + by

Arguments of logarithms in the right-hand sides of Egs.
(32) and (35) at} — 1 become equal

T N .

At m% — 1, solution (34) with allowance for relation (36)
reduces to Eq. (1) with
- M
Pr K,y (asx + by)
If the value ofn, is specified (as it has been done else-

where), one can derive a formula f&¥, taking into account
thata, + b, = Ky atmi =1

In

. 1
||m = — |nx ax+bx
y—0

(35)

1
b (A=) o
—= X axtbx

Ky
KH,\:l

*_1 1
Ay + by x"x by (1—m¥)

ay + by

mi—>1 mi—1

—m (37)

Ny

Ki=Q2+m+n,)yKgK,Pr (38)

5. An extremum of thefunction AT

It is deemed important for the present examination to an-
alyze some properties of solution (34). Having found the
derivative of Eg. (34) with respect to coordinatdt is possi-
ble to determine the coordinate of the point of an extremum
for the temperature distribution (34)

¢ - by(my +1) ﬁ
xext—|: ar(2+m) ]

Pr K,y
Relative thickness of the thermal boundary layeifor
the turbulent flow is found from the first of Eqgs. (29) fer
and Eq. (22). Consequently, the valuefs

A= (xPrie) " = (Cpxmitppe) M (40)

For boundary conditions (1), (2), one can obtaifi= 1
andA = const. Atm? < 1, the value ofA increases withx.
At m? > 1, the dependence of on x is decreasing.

Relation (30) forK ; has a critical poinK i = 0. Basing
on the physical sense of the model used, the parankgter
can be only positive. Thus, it follows for the critical point

(39)

1
_ 41
Xcrit b1Prr(1— Ky) (41)
~1/n 1 —i/n
e = () = |t | “
1
Xerit = [ Xerit/ Cy 11 (43)

Egs. (40)—(43) are important in calculations of distribu-
tions of AT and their analysis.
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6. Computations of the Nusselt number and wall
temperature distributions

Northrop [9] and Northrop and Owen [10] used the inte-
gral method of Dorfman [1] at the fixed value= 1/7 for
numerical simulations of the conditions observed in their
own experiments. As well as in case of the analytical ver-
sion of the Dorfman’s method, the results of numerical pre-
dictions of the Nusselt number done by Northrop [9] and
Northrop and Owen [10] noticeably exceeded their experi-
mental data atA7 /dx ~ 0 and AT /dx < 0. Agreement of
the computations and experiments was goodst gdx > 0
except for the cases of high valuesR#,, at which the pre-
dictions were lower than experimental values.

Ong and Owen [15] simulated the experimental condi-
tions of Northrop [9] via a numerical solution of the bound-
ary layer's differential equations with the use of the al-
gebraic model of turbulent viscosity proposed by Cebeci
and Smith [16]. Simulations and experiments agreed well.
Therefore, this is the evidence that the experimental data
of Northrop [9] are reliable, and the reason of difference in
computations of Northrop [9] and Northrop and Owen [10]
from the their own experiments consists indeed in the essen-
tial error of the Dorfman’s method atAdl’ /dx < 0.

Selected for the analysis in this paper, as well as in the
work of Ong and Owen [15], were the experimental data of
Northrop [9] for the Nusselt number based on the local heat
flux measurements with the use of fluxmeters. The resulting
Nusselt numbers were further corrected by deduction of the
radiant heat flux using the procedure of Northrop [9].

All our further computations were done Bt = 0.72 as
appropriate for air.

Experimental distributions of the temperature difference
between the disk and the outer flow were classified by
Northrop [9] into four groups. They are regarded as those
conventionally featured by the formulas (1), (2)mat =
—0.2,0.1,0.4 and 0.6. Examples of such distributions are
shown in Figs. 2, 4 and 6. Within each group, dataAdf
differed from each other by maximum 10-15% for different
values ofRe,, with the general mode of the variation AfT
remaining practically the same.

Correspondence of Eq. (2) to the experiments at the
above-mentioned values of the exponentis quite con-
ventional. It is apparent, that Eq. (2) assumes absence of
the points of a minimum or maximum (i.e., points of an
extremum) and inflection inside a range of the definition
of T, over the disk’s radius. At the same time all experi-
mental distributions plotted in Figs. 2, 4 and 6 exhibit the
above-mentioned particular points. However, as a matter of a
convenience of the references, the classification of the exper-
iments into the groups accepted by Northrop [9] is preserved
also in this paper.

Results of modeling the case conventionally namge-

0.1 are presented in Figs. 2, 3. Computations were done
at n = ny = 1/6. Distributions of the temperature head
AT correlate well with Eq. (2) at, = 0.06, ¢§ = 1.16
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Fig. 2. Radial distribution of the temperature distributiai’, case con-
ventionallyn, = 0.1. Experiments of Northrop [9]: 1-Re, = 1.08 x 10;
2—1.35x 10°%; 3—2.14 x 108; 4—3.2 x 10P. Calculations using Eq. (34)
atn =1/6: 5—K1 = 0.0232,m, = 1.48; 6—K1 = 0.0224,m, = 1.38.
Eq. (2): 7—¢f = 1.16,n, = 0.06; 8—c{; = 1.26,n, = 0.06.

Nu
2500

2000
1500
1000 '
500 =25~

Fig. 3. Radial distribution of the Nusselt number, case conventionally
nx = 0.1: 1-4—experiments of Northrop [9]: 5-8—present predictions
atn =nyp = 1/6. Solid lines, Eq. (9): 5, 67 = 0.0232, m, = 1.48;

7, 8—K, = 0.0224, m, = 1.38. Dash-dotted lines 5-8—Egs. (3), (7),
Ky = 0.0243, ny, = 0.06. Dashed line 9—Egs. (3), (51 = 0.0197,

nx = 0.1. Reynolds numbers: 1, 5Re, = 1.08 x 105; 2, 6—135 x 1¢%;
3,7—214x 105; 4, 8, 9—32 x 10P.

for Re, = (1.08,...,1.35 x 10° and atn, = 0.06, ¢} =
1.26 for Re, = (2.14,...,3.2) x 1P over the rangex ~
0.3,...,0.85. Resulting from this fact is fair consistency of
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oo w o’ x=1
w >
T T
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(T -T)H(T -T)

-
T

0,2

Fig. 4. Radial distribution of the temperature distributid@, case conven-
tionally n, = —0.2. Experiments of Northrop [9]: 1-Re, = 1.08 x 10°;
2—265 x 10°. Calculations using Eq. (34) at= 1/6: 3—K1 = 0.0157,
my = 1.3; 4—K41 = 0.0137, my = 0.775. Calculations using Eq. (2):
5—(‘6 =1.14,n, =—-15.

1600

1200

Fig. 5. Radial distribution of the Nusselt number, case conventionally
ny = —0.2: 1, 2—experiments of Northrop [9]: 3, 4—present predictions
atn =ny =1/6. Lower group of lines 3, 4 and 1Re, = 1.08 x 108; up-

per group of lines 3, 4 and 5Re, = 2.65 x 108. Lower line 3—Eq. (9),

K1 =0.0157,mx = 1.3; upper line 3—Eq. (9)K1 = 0.0137,m, = 0.775.
Lines 4—Egs. (3), (7)K1 = 0.0156,n4 = —1.5. Line 5—Egs. (3), (5),
K1=0.0193,n4 = —0.2.

Improvement of the correlation with the experimental
data for the Nusselt number can be attained using Eq. (9) and
simulating distributions oA T using Eq. (34). As a whole,
the absolute errors of Eq. (34) with respect to the experi-

the experimental values for the Nusselt number and thosemental data are not lower than errors of Eq. (2). However,

calculated from Eq. (3) (withK; being computed from
Eq. (7)) forx ~ 0.3, ..., 0.85. However, observed for >

formula (2) predicts constant sign of the derivativeT/dx
for any x. On the contrary, Eqg. (34) allows the quite good

(0.7,...,0.85) is the decreasing radial dependence of ex- simulation also of the sign of the derivativ& @ /dx, which
perimental values of the wall temperature contrary to the in the considered case changes from the positive to nega-

still increasing predicted values &7 . This phenomenon

tive values with increasing. This is the main reason of the

generates the tendency of exceeding by the predicted Nusimprovement of the consistency between the predicted and
selt numbers over the experimental values in the area whereexperimental values dfu.

signs of the derivativesAT /dx are in a disagreement. This

Results of simulations of the case conventionally=

tendency is amplified with the increasing Reynolds numbers —0.2 are shown in Figs. 4, 5. Predictions using Egs. (3), (7),
Re,. It is also necessary to note that the calculation of Nu (9) and (34) were done at=nr = 1/6. As evident from

from Eq. (3) with the use of Eq. (7) fdt; is still better than
use of Egs. (3) and (5) (Dorfman’s [1] method)at= 0.1,
n=nr =1/7 (see curve 9 in Fig. 3).

Fig. 4, a fair agreement of the predicted and experimental
data forAT is observed ak > 0.6. Only curve 4 exhibits
gualitative consistency of the sign of the predicted deriva-
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2500+ ® -1 @.;{'/-
O - 2 y .'/'.
. 2000}—— - 3

< 1500l Tt

g 0 8y

= 1000

= - o=

&'3 500 L—=""

- 0.4 0.6 0.8 1,0
X

X Fig. 7. Radial distribution of the Nusselt number, case conventionally

ny = 0.4 (upper group of linesRe, = 2.67 x 10%) and ny = 0.6
(lower group of lines,Re, = 1.59 x 106). 1, 2—experiments of
Northrop [9]; 3, 4—present predictions at=ny = 1/6 (upper group)
andn = np = 1/6.5 (lower group). Lower line 3—Eq. (9)k1 = 0.0219,
my = 1.48; upper line 3—Eq. (9)K1 = 0.0249,mx = 1.34. Lower line
4—Eqgs. (3), (7),K1 = 0.0227, n, = 0.6; upper line 4—Eqgs. (3), (7),
K1=0.0262,n4 =0.7. Line 5—Egs. (3), (5)K1 = 0.0202,n+ = 0.4.

Fig. 6. Radial distribution of the temperature distributid@, case conven-
tionally n, = 0.4 (data 1, 4, 6 aRe, = 2.67 x 1) andn = 0.6 (data 2,
3, 5 atRe, = 1.59 x 106). 1, 2—experiments of Northrop [9]. Computa-
tions, Eq. (34): 3—K1 =0.0219,m, = 1.48,n =1/6.5; 4—K, = 0.0249,
my =1.34,n=1/6. Eq. (2): 5—j =1,nx = 0.6, 6~ =1,n, =0.7.

tive dAT /dx with the experiments at = 0.35, ..., 0.45.
It should be mentioned that the correlation of Eq. (2) with
the experiments is observed onlymgt = —1.5, but not at
n, = —0.2, as suggested in the work of Northrop [9]. n, = 0.7, but notn, = 0.4.

On the face of it, differences in distributions &fT in Eq. (34) allows obtaining distributions &7 with an er-
Fig. 4 atx > 0.6 obtained from Egs. (2) and (34) seem to ror not exceeding the error of Eq. (2) (see Fig. 6). However,
be not too essential. However, it is evident that the Nusselt Eq. (34) provides an essential radial variation of the absolute
numbers are sensitive to the choice of the paramétgend value of the derivative AT /dx and thus more opportunities
my. Values ofNu from Egs. (3), (7) aRe, = 1.08 x 100 for a selection of the parameteky andm,.
show quite a good agreement with the experiments (the An analysis of the distributions of the local Nusselt num-
lower curve 4 in Fig. 5). However, the experimental point bers in Fig. 7 shows that Egs. (9) together with (34) at spe-
for Nu at x ~ 0.4 corresponds to the laminar flow, and an cially fitted valueskK1 andm, provide a better agreement
agreement with it means that the predicted dependence 4with the experiment than Egs. (3) together with (7) do. This
should be considered underestimated. Confirming this factis especially obvious for the higher valugs, = 2.67 x 10P.
is the upper curve 4 fdRe, = 2.65x 10°, where inadequate  Inexactitudes of Eq. (3) a1 computed from Eq. (5) are not
model (3), (7) results in an essential underestimation of the so essential (see curve 6 in Fig. 7). This fact corresponds
calculations ak < 0.7 as compared with experiments, with  to the earlier obtained conclusions of Shevchuk [12,13] that
this underestimation being not “compensated” with an insuf- the errors of the Dorfman’s (1963) method are essential at
ficient development of the turbulent flow in the experiments n, <O0.
(i.e., the turbulent flow is already developedcat 0.4). It is also necessary to mention that the predictions in

Again, an improvement of the agreement with the ex- Figs. 3, 5 and 7 correlate well with calculations of Ong
perimental data for the Nusselt number is achieved due toand Owen [15] done, as indicated above, using a differen-

atRe, = 1.59 x 10°. At the same time, the experiments at
Re, = 2.67 x 10° can bee simulated better with the value

Eq. (9), with the distributionsAT being modeled using
Eq. (34). Parameter&; andm, in Eq. (34) were chosen

tial method.
The characteristic feature of data in Figs. 3, 5 and 7 is

based on the necessity of an agreement of the predicted andhe “dip” of the experimental values ®u in the work of

experimental values dflu.

A calculation of the Nusselt number from Eq. (3) us-
ing the Dorfman’s method (Eq. (5)) at. = —0.2 leads to
obtaining the noticeably overestimated valueslofn com-
parison with the experiments (curve 5 in Fig. 5).

Northrop [9] at the pointt ~ 0.73 as compared to predic-
tions. The same inconsistency of the experiments and pre-
dictions at the position ~ 0.73 is pointed out by Ong and
Owen [15]; apparently, the reason is the systematic error of
the experimental measurements of Northrop [9] in this loca-

Shown in Figs. 6, 7 are the results of the quite close casestion.

conventionallyn, = 0.4 andn, = 0.6. For Re, = 1.59 x

It is necessary to emphasize that the velocity and tem-

10°, a good agreement with the experiments is attained atperature profiles were not measured in the experiments of

n=nr =1/6.5;forRe, =2.67x 108, itis necessary to em-
ploy values: = n = 1/6 (see lines 3 in Fig. 7). An analysis
of the distributions of the temperature head" in Fig. 6
atx =0.3,...,0.6 shows that indeed the valug = 0.6
atcy =1 in Eq. (2) correlates well with the experiments

Northrop [9], therefore the fulfilled estimation of the val-
ues of the exponents is grounded on the oblique data for
the Nusselt numbers. Nevertheless, taking into account the
interrelation of the valuez and the exponenty at the
Reynolds number in Eq. (3) fdiu under condition (1) or
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(2) (see Table 1), it is possible to deem the analysis given References
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