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A new type of the boundary condition allowing analytical solution
of the thermal boundary layer equation
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Abstract

Outlined in this paper is a new analytical form of a non-monotone distribution of the wall temperature allowing solving the
boundary layer equation analytically. The thermal boundary layer equation in its integral form was solved for the temperature distr
the wall, with the Nusselt number being specified as a boundary condition in the form of an arbitrary power-law function. The new
as illustrated on the example of a free rotating disk, can provide the analytical formulas for the wall temperature distributions having
a maximum or a minimum, while the traditionally used power-law distributions behave as the monotone functions. The new solution
earlier known power-law solutions for the wall temperature and the Nusselt number as a particular case. Numerical data compute
proposed solution are in a better agreement with known experimental data than the traditionally used power-law functions.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

At present, the most part of the approximate analyt
solutions of the equations of laminar and turbulent ther
boundary layers are known to be obtained using a pow
law distribution for the wall temperature considered a
boundary condition of the problem. For a free rotating d
taken in the present research as an example (see Fig. 1
power-law distribution of the wall temperature, as specifi
by Dorfman [1] can be written in the following form

Tw − T∞ = c0r
n∗ (1)

�T = c∗
0x

n∗ (2)

wheren∗, c0, andc∗
0 are constants. If distribution (2) is vali

at anyx, thenc∗
0 = 1. In the case if Eq. (2) holds only withi

a certain range of variation of the argumentx, the constan
c∗

0 can be chosen in an empirical way and differs from un
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The Nusselt number for boundary conditions (1), (2
featured by relation

Nu = K1RenR
ϕ x1+m (3)

Values of constants and exponents in Eq. (3) were
tained both experimentally and theoretically by Cardo
et al. [2], Dorfman [1], Elkins and Eaton [3], Owen an
Rogers [4,5] etc. Currently known integral methods (lami
and turbulent flow) and self-similar solution (laminar flo
state the following unique relation between the exponen
Eq. (3)

m = 2nR − 1 (4)

wherem = 0 for laminar flow, and most oftenm = 0.6 for
turbulent flow.

ConstantK1 depends on the type of the boundary co
ditions at the wall, flow regime and Prandtl number. T
most widely known and frequently cited solution for the co
stantK1 is that of Dorfman [1]. Corrected by Owen an
Rogers [4] for turbulent flow it looks as
K1 = 0.0197(n∗ + 2.6)0.2Pr0.6 (5)
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Nomenclature

b outer radius of the disk . . . . . . . . . . . . . . . . . . . . m
Cf /2 total skin friction coefficient,= τw/(ρV 2∗ )

cp specific heat at constant pressure . . J·kg−1·K−1

k thermal conductivity . . . . . . . . . . . . W·m−1·K−1

KV shape-factor of the velocity profile,
= ∫ ∞

0 vrvϕ dz/[ωr
∫ ∞

0 vr dz]
m parameter,= (1− n)/(3n + 1)

mx arbitrary exponent in Eq. (9)
m∗

x parameter,= mx − m

Nu local Nusselt number,= qwr/[k(Tw − T∞)]
n exponent in the approximation of the

velocity and temperature profiles
in turbulent flow, Eqs. (18), (19)

nR exponent of the Reynolds number in Eqs. (3), (9)
n∗ exponent in the radial distribution of the wall

temperature, Eq. (1), (2)
Pr Prandtl number,= µcp/k

qw heat flux at the wall . . . . . . . . . . . . . . . . . . W·m−2

Reω local rotational Reynolds number,= ρωr2/µ

Reϕ rotational Reynolds number at the outer radius
of disk,= ρωb2/µ

ReV∗ modified rotational Reynolds number,
= ρV∗δ/µ

r,ϕ, z radial, tangential and axial cylindrical
coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
tgϕ tangent of the flow swirl angle,= vr/(ωr − vϕ)

vr , vϕ, vz radial, tangential and axial velocity
components in cylindrical coordinates . . m·s−1

V∗ = ωr(1+ α2)1/2 modified velocity . . . . . m·s−1

x dimensionless radial coordinate,= r/b

Greek symbols

α wall value of the tangent of the flow swirl
angle tgϕ

∆ ratio of thickness of the thermal boundary layer
to thickness of the boundary layer,= δT /δ

δ, δT thickness of boundary layer and thermal
boundary layer, respectively . . . . . . . . . . . . . . . m

δ̄ dimensionless boundary layer thickness,= δ/b

�T temperature difference between the wall and the
outer flow,= Tw − T∞ . . . . . . . . . . . . . . . . . . . . K

�T dimensionless temperature difference,
= �T/�Tx=1

�Tx=1 temperature difference atx = 1 . . . . . . . . . . . . K
µ dynamic viscosity . . . . . . . . . . . . . . . . . . . . . . Pa·s
ξ dimensionless coordinate,= z/δ

ξT dimensionless coordinate,= z/δT

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m s−3

τw total shear stress at the wall . . . . . . . . . . . . . . . Pa
χ Reynolds analogy parameter
ω angular speed of rotation . . . . . . . . . . . . . . . . s−1

Subscripts

crit critical point
ext point of extremum
r, ϕ radial and angular projections of a parameter
w wall
∞ outer edge of the boundary layer
Fig. 1. Layout of the problem under investigation.

of
(5)
ults

8],
s-

f-
atnR = 0.8, m = 0.6, n = 1/7.
Dorfman’s solution agrees well with early experiments

Cobb and Saunders [6] and Nikitenko [7]. However, Eq.
noticeably (in certain cases up to 14%) overpredicts res

of the more careful experimental investigations of Cardone
et al. [2], Elkins and Eaton [3], McComas and Hartnett [
Northrop [9], Northrop and Owen [10], Popiel and Bogu
lawski [11] fulfilled later for the values ofn∗ = −1, . . . ,0
(i.e., at d�T /dx � 0). Shevchuk [12] has shown that Dor

man’s (1963) solution for the laminar flow
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Table 1
Values of constants in Eqs. (3), (7) for turbulent flow in accordance w
Shevchuk [13]

Coefficient n = 1/7 n = 1/6.5 n = 1/6

K3 0.0268 0.0306 0.0353
KV 0.203 0.215 0.228
np = 0.4/(1− KV ) 0.502 0.509 0.518
nR = (n + 1)/(3n + 1) 0.8 0.789 0.778
m = (1− n)/(3n + 1) 0.6 0.579 0.556
mx = 1+ m 1.6 1.579 1.556

K1 = K2 = 0.308(n∗ + 2)1/2Pr1/2 (6)

is in the even worse agreement with the self-similar so
tion at n∗ = −1.5, . . . ,0 for Pr = 1, . . . ,0.1; inexactitudes
of Eq. (6) reach 34, . . . ,238% and increase with the decrea
ing Prandtl number.

The remedy was found by Shevchuk [12,13], whose
lution (valid atPr � 1) is

K1 = K3Pr

[
4+ m

2+ m + n∗
KV + (1− KV )Prnp

]−1

(7)

K1 = 0.4435

0.3486+ 2.002/(2+ n∗)
(8)

Eq. (7) corresponds to turbulent flows, while Eq. (8) (p
sented here for the particular case ofPr = 0.72) is valid for
laminar flows.

Numerical values of constants in Eq. (7) depending
the exponentn in the power-law approximation of the tem
perature and velocity profiles (for details see Eqs. (18), (
are documented in Table 1. Eq. (7) (at the standard v
of n = 1/7) and (8) agree very well with known expe
mental and theoretical data of Cardone et al. [2], Elkins
Eaton [3], McComas and Hartnett [8], Owen and Rogers
Popiel and Boguslawski [11], Shevchuk [12], for which t
boundary conditions (1) and (2) are valid.

Sometimes the wall temperature distributions canno
accurately described by analytical Eqs. (1) and (2), as for
ample, took place in experiments of Northrop [9], Northr
and Owen [10].

Distributions of the Nusselt number obtained by these
thors also differ quite significantly from the values sugges
by Eqs. (3), (5), (7) and experimental data of other auth
The main feature of the experimental values forNu mea-
sured by Northrop [9], Northrop and Owen [10] is that th
clearly exhibit a weaker dependence on the radial coordi
x, than that predicted by Eqs. (3) and (4) atn = 1/7.

Thus the aim of the present research was to find
whether another class of the analytical solutions can be
rived, which can be in a good agreement with experime
data of Northrop [9], Northrop and Owen [10] that do n
comply reasonably good with boundary conditions (1),
and correspondent equations for the Nusselt number.
analysis below is performed in the general form suitable b
for laminar and turbulent flow, however comparisons of
newly obtained solution is made only for the turbulent fl

most often occurring in technical applications.
2. Statement of the problem

We are looking here for an opportunity to find out an a
proximate analytical solution of the rotating disk heat tra
fer problem for the case, where the exponent at variabx

in Eq. (3) takes an arbitrary valuemx = const, which is in
general different from 1+ m

Nu = K1RenR
ϕ xmx (9)

Most commonly the energy equation is solved for
temperature distributions in the fluid (and for the Nuss
numbers) at specified boundary conditions for the tem
ature at the wall. We will refer in this paper to this type
mathematical problems as direct ones. In order to deriv
expression for the temperature distribution at the wall�T ,
which corresponds to Eq. (9), we will consider an inve
mathematical problem in the sense that the energy equ
is to be solved for�T at a given boundary condition for th
Nusselt number in the form of Eq. (9).

Solution of the stated problem is performed using the
tegral method outlined in works of Shevchuk [12,13] a
Shevchuk et al. [14]. An integral equation of the therm
boundary layer is

d

dx

[
Reωδ̄KH Km�T

] = Nu

Pr
�T (10)

ParametersKH and Km are defined by Owen an
Rogers [4] and Shevchuk [12,13] as

KH =
∞∫

0

vr(T − T∞)dz
/[

(Tw − T∞)

∞∫
0

vr dz

]
(11)

Km = δ−1

δ∫
0

vr

ωr
dz (12)

As suggested by Owen and Rogers [4,5], integral para
ters for the hydrodynamic part of the problem in the lami
flow can be found via integration of the self-similar soluti
for the free rotating disk

Km = I∞α
1

δ(ω/ν)1/2
= I∞α

1

γ
, α = 0.8284 (13)

I∞ = 0.5338, δ̄ = C∗
δ , C∗

δ = γ Re−1/2
ϕ (14)

Kmδ̄ = I∞α Re−1/2
ϕ (15)

Cf

2
= AcRe−1/2

ω = AcRe−1/2
ϕ x−1

Ac = 0.6159
(
1+ α2)−1/2 (16)

Nu = Cf

2
Reω

(
1+ α2)1/2

Pr χ (17)

Choice of the valuesC∗
δ or γ depends on the desire

accuracy of their determination (via integration) from t

self-similar profiles ofvr and vϕ . Since parameters̄δ and



I.V. Shevchuk / International Journal of Thermal Sciences 44 (2005) 374–381 377

a-

aw
ol-

the
ts of
are

of

ic

for
of

the
, it
ow

di-

k

-
k of

ra-
u-

a-
see

u-

ing

in

of

fol-

ul-
Km are used in Eq. (9) as a product, chosen values ofC∗
δ or

γ for laminar flow do not affect the subsequent transform
tions (see Eqs. (13)–(15)).

For turbulent flow, Shevchuk [13] used a power-l
model for the velocity and temperature profiles in the f
lowing form

(vϕ − ωr)/(−ωr) = ξn

vr/(ωr) = ξn tgϕ = α(1− ξ)2ξn (18)

(T − Tw)/(T∞ − Tw) = ξn (19)

The power-law model used by Shevchuk [12,13] for
Nusselt numbers is again Eq. (17), while the componen
the shear stresses and the Reynolds analogy parameter

τwr = −ατwϕ, τwϕ = −τw

(
1+ α2)1/2 (20)

Cf = C
−2/(n+1)
n Re−2n/(n+1)

V∗ (21)

χ = ∆−nPr−np (22)

whereCn = 2.28+0.924/n, np = 0.4/(1−KV ). In Eq. (22)
bothχ and∆ are unknowns to be found from the solution
the thermal boundary layer equation.

The solution of Shevchuk [12,13] for the hydrodynam
parameters in the turbulent flow is

δ̄ = C∗
δ xm, C∗

δ = γ Re−2n/(3n+1)
ϕ (23)

Cf

2
= AcRe−2n/(3n+1)

ω

= AcRe−2n/(3n+1)
ϕ x−4n/(3n+1) (24)

KV = 1− D2/A1, Km = αA1

Ac = K3
(
1+ α2)−1/2 (25)

We refer the reader who is interested in formulas
the rest of constants in Eqs. (23)–(25) to the work
Shevchuk [13] and references. Givenn = 1 in Eqs. (23)–
(25), one can obtainm = 0, with the exponent of the
Reynolds numberReϕ being equal to−1/2. Thus, Eqs. (23)–
(25) formally generalize Eqs. (13)–(16) obtained for
analogous parameters of the laminar flow. However
should be remembered that all constants for laminar fl
are determined namely by Eqs. (13)–(16).

3. Solution of the inverse problem

Taking derivative of the left-hand part of Eq. (10) and
viding both sides of this equation byReωδ̄KH Km�T , one
can deduce

d

dx

[
ln

(
Reωδ̄KH Km�T

)] = Nu

Pr

1

Reωδ̄KH Km

(26)

It is necessary to integrate Eq. (26) fromx to 1 (provided

thatx �= 0 to avoid uncertainty in both sides of this equation).
Taking into account Eq. (9) forNu and (23) forδ̄, along with
relationReω = Reϕx2, one can obtain

[
ln

(
Reωδ̄KH Km�T

)]1
x

= K1

Pr Kmγ

1∫
x

xm∗
x dx

x2KH

(27)

ParameterKH is specified by the model of Shevchu
[12,13]

KH = 1

b2
− χ Prnp (1− KV )

b1

b2
(28)

For turbulent flowb1 = b2 = 1. For laminar flow, val-
ues ofb1, b2 andnp depending only on the Prandtl num
ber may be calculated using equations given in the wor
Shevchuk [12] (b1 = b2 = 1 also atPr = 1).

According to Owen and Rogers [4,5], the integral pa
meterKV is equal to 0.3482 in the laminar flow (for turb
lent flow see Eq. (25)).

With allowance for the aforementioned relations for p
rameters in the right-hand side of Eq. (27), it is easy to
that

χ = Cχxmx−m−1, Cχ = K1

Ac(1+ α2)1/2Pr
(29)

Apparently, solution (3) for the temperature distrib
tion (1), (2) takes place atm∗

x = mx − m = 1, mx = 1+ m.
Eq. (28) can be expressed using Eqs. (29) in the follow

form

KH = a∗ + b∗xm∗
x−1 (30)

a∗ = 1

b2
, b∗ = −Prnp (1− KV )

b1

b2
Cχ (31)

Dividing numerator and denominator of the integrand
the right-hand side of Eq. (27) byxm∗

x , expressingKH from
Eq. (30) one obtains for the integral in the right-hand side
Eq. (27)

1∫
x

xm∗
x dx

a∗x2 + b∗xm∗
x+1

= 1

b∗(1− m∗
x)

ln
a∗ + b∗xm∗

x−1

a∗ + b∗

= ln

[
a∗ + b∗xm∗

x−1

a∗ + b∗

] 1
b∗(1−m∗

x )

(32)

One can also rewrite the left-hand side of Eq. (27) as
lows

[
ln

(
Reωδ̄KH Km�T

)]1
x

= ln

[
�T

KH x2+m

KHx=1

]−1

(33)

Substituting Eqs. (32) and (33) into Eq. (26), one can
timately obtain

�T =
[

KH

]− K1
Pr Kmγb∗(1−m∗

x )
−1

x−2−m (34)

KHx=1
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4. Passage to the limiting case of m∗
x = 1

Let us consider limit of Eq. (34) atm∗
x → 1 or, that is the

same, aty = 1 − m∗
x → 0 . Utilizing the rule of L’Hospital,

one can obtain

lim
y→0

ln a∗+b∗x−y

a∗+b∗
b∗y

= − lnx

a∗ + b∗
= lnx

− 1
a∗+b∗ (35)

Arguments of logarithms in the right-hand sides of E
(32) and (35) atm∗

x → 1 become equal[
a∗ + b∗xm∗

x−1

a∗ + b∗

] 1
b∗(1−m∗

x )

m∗
x→1

=
[

KH

KHx=1

] 1
b∗(1−m∗

x )

m∗
x→1

= x
− 1

a∗+b∗

(36)

At m∗
x → 1, solution (34) with allowance for relation (36

reduces to Eq. (1) with

n∗ = K1

Pr Kmγ (a∗ + b∗)
− 2− m (37)

If the value ofn∗ is specified (as it has been done el
where), one can derive a formula forK1, taking into accoun
thata∗ + b∗ = KH atm∗

x = 1

K1 = (2+ m + n∗)γKH Km Pr (38)

5. An extremum of the function �T

It is deemed important for the present examination to
alyze some properties of solution (34). Having found
derivative of Eq. (34) with respect to coordinatex, it is possi-
ble to determine the coordinate of the point of an extrem
for the temperature distribution (34)

xext =
[ K1

Pr Kmγ
− b∗(mx + 1)

a∗(2+ m)

] 1
1−m∗

x
(39)

Relative thickness of the thermal boundary layer� for
the turbulent flow is found from the first of Eqs. (29) forχ

and Eq. (22). Consequently, the value of∆ is

∆ = (
χ Prnp

)−1/n = (
Cχxm∗

x−1Prnp
)−1/n (40)

For boundary conditions (1), (2), one can obtainm∗
x = 1

and∆ = const. Atm∗
x < 1, the value of∆ increases withx.

At m∗
x > 1, the dependence of∆ onx is decreasing.

Relation (30) forKH has a critical pointKH = 0. Basing
on the physical sense of the model used, the parameteKH

can be only positive. Thus, it follows for the critical point

χcrit = 1

b1Prnp (1− KV )
(41)

∆crit = (
χcritPrnp

)−1/n =
[

1

b1(1− KV )

]−1/n

(42)

xcrit = [χcrit/Cχ ]
1

m∗
x−1 (43)

Eqs. (40)–(43) are important in calculations of distrib

tions of�T and their analysis.
6. Computations of the Nusselt number and wall
temperature distributions

Northrop [9] and Northrop and Owen [10] used the in
gral method of Dorfman [1] at the fixed valuen = 1/7 for
numerical simulations of the conditions observed in th
own experiments. As well as in case of the analytical v
sion of the Dorfman’s method, the results of numerical p
dictions of the Nusselt number done by Northrop [9] a
Northrop and Owen [10] noticeably exceeded their exp
mental data at d�T /dx ≈ 0 and d�T /dx < 0. Agreement of
the computations and experiments was good at d�T /dx > 0
except for the cases of high values ofReϕ , at which the pre-
dictions were lower than experimental values.

Ong and Owen [15] simulated the experimental con
tions of Northrop [9] via a numerical solution of the boun
ary layer’s differential equations with the use of the
gebraic model of turbulent viscosity proposed by Ceb
and Smith [16]. Simulations and experiments agreed w
Therefore, this is the evidence that the experimental
of Northrop [9] are reliable, and the reason of difference
computations of Northrop [9] and Northrop and Owen [1
from the their own experiments consists indeed in the es
tial error of the Dorfman’s method at d�T /dx � 0.

Selected for the analysis in this paper, as well as in
work of Ong and Owen [15], were the experimental data
Northrop [9] for the Nusselt number based on the local h
flux measurements with the use of fluxmeters. The resu
Nusselt numbers were further corrected by deduction of
radiant heat flux using the procedure of Northrop [9].

All our further computations were done atPr = 0.72 as
appropriate for air.

Experimental distributions of the temperature differen
between the disk and the outer flow were classified
Northrop [9] into four groups. They are regarded as th
conventionally featured by the formulas (1), (2) atn∗ =
−0.2,0.1,0.4 and 0.6. Examples of such distributions a
shown in Figs. 2, 4 and 6. Within each group, data for�T

differed from each other by maximum 10–15% for differe
values ofReϕ , with the general mode of the variation of�T

remaining practically the same.
Correspondence of Eq. (2) to the experiments at

above-mentioned values of the exponentn∗ is quite con-
ventional. It is apparent, that Eq. (2) assumes absenc
the points of a minimum or maximum (i.e., points of
extremum) and inflection inside a range of the definit
of Tw over the disk’s radius. At the same time all expe
mental distributions plotted in Figs. 2, 4 and 6 exhibit
above-mentioned particular points. However, as a matter
convenience of the references, the classification of the ex
iments into the groups accepted by Northrop [9] is preser
also in this paper.

Results of modeling the case conventionally namedn∗ =
0.1 are presented in Figs. 2, 3. Computations were d
at n = nT = 1/6. Distributions of the temperature he

�T correlate well with Eq. (2) atn∗ = 0.06, c∗

0 = 1.16
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Fig. 2. Radial distribution of the temperature distribution�T , case con-
ventionallyn∗ = 0.1. Experiments of Northrop [9]: 1—Reϕ = 1.08× 106;
2—1.35× 106; 3—2.14× 106; 4—3.2× 106. Calculations using Eq. (34
at n = 1/6: 5—K1 = 0.0232,mx = 1.48; 6—K1 = 0.0224,mx = 1.38.
Eq. (2): 7—c∗

0 = 1.16,n∗ = 0.06; 8—c∗
0 = 1.26,n∗ = 0.06.

Fig. 3. Radial distribution of the Nusselt number, case convention
n∗ = 0.1: 1–4—experiments of Northrop [9]: 5–8—present predictio
at n = nT = 1/6. Solid lines, Eq. (9): 5, 6—K1 = 0.0232, mx = 1.48;
7, 8—K1 = 0.0224, mx = 1.38. Dash-dotted lines 5–8—Eqs. (3), (7
K1 = 0.0243, n∗ = 0.06. Dashed line 9—Eqs. (3), (5),K1 = 0.0197,
n∗ = 0.1. Reynolds numbers: 1, 5—Reϕ = 1.08× 106; 2, 6—1.35× 106;
3, 7—2.14× 106; 4, 8, 9—3.2× 106.

for Reϕ = (1.08, . . . ,1.35) × 106 and atn∗ = 0.06, c∗
0 =

1.26 for Reϕ = (2.14, . . . ,3.2) × 106 over the rangex ≈
0.3, . . . ,0.85. Resulting from this fact is fair consistency
the experimental values for the Nusselt number and th
calculated from Eq. (3) (withK1 being computed from
Eq. (7)) for x ≈ 0.3, . . . ,0.85. However, observed forx >

(0.7, . . . ,0.85) is the decreasing radial dependence of
perimental values of the wall temperature contrary to
still increasing predicted values of�T . This phenomenon
generates the tendency of exceeding by the predicted
selt numbers over the experimental values in the area w
signs of the derivatives d�T /dx are in a disagreement. Th
tendency is amplified with the increasing Reynolds numb
Reϕ . It is also necessary to note that the calculation of
from Eq. (3) with the use of Eq. (7) forK1 is still better than
use of Eqs. (3) and (5) (Dorfman’s [1] method) atn∗ = 0.1,

n = nT = 1/7 (see curve 9 in Fig. 3).
-

Fig. 4. Radial distribution of the temperature distribution�T , case conven
tionally n∗ = −0.2. Experiments of Northrop [9]: 1—Reϕ = 1.08× 106;
2—2.65× 106. Calculations using Eq. (34) atn = 1/6: 3—K1 = 0.0157,
mx = 1.3; 4—K1 = 0.0137, mx = 0.775. Calculations using Eq. (2
5—c∗

0 = 1.14,n∗ = −1.5.

Fig. 5. Radial distribution of the Nusselt number, case convention
n∗ = −0.2: 1, 2—experiments of Northrop [9]: 3, 4—present predictio
at n = nT = 1/6. Lower group of lines 3, 4 and 1—Reϕ = 1.08× 106; up-
per group of lines 3, 4 and 5—Reϕ = 2.65× 106. Lower line 3—Eq. (9),
K1 = 0.0157,mx = 1.3; upper line 3—Eq. (9),K1 = 0.0137,mx = 0.775.
Lines 4—Eqs. (3), (7),K1 = 0.0156,n∗ = −1.5. Line 5—Eqs. (3), (5),
K1 = 0.0193,n∗ = −0.2.

Improvement of the correlation with the experimen
data for the Nusselt number can be attained using Eq. (9
simulating distributions of�T using Eq. (34). As a whole
the absolute errors of Eq. (34) with respect to the exp
mental data are not lower than errors of Eq. (2). Howe
formula (2) predicts constant sign of the derivative d�T /dx

for any x. On the contrary, Eq. (34) allows the quite go
simulation also of the sign of the derivative d�T /dx, which
in the considered case changes from the positive to n
tive values with increasingx. This is the main reason of th
improvement of the consistency between the predicted
experimental values ofNu.

Results of simulations of the case conventionallyn∗ =
−0.2 are shown in Figs. 4, 5. Predictions using Eqs. (3),
(9) and (34) were done atn = nT = 1/6. As evident from
Fig. 4, a fair agreement of the predicted and experime
data for�T is observed atx � 0.6. Only curve 4 exhibits

qualitative consistency of the sign of the predicted deriva-



380 I.V. Shevchuk / International Journal of Thermal Sciences 44 (2005) 374–381

-

a-

ith

to
selt

(the
int
an
ce 4
fact

e
the

th
uf-

nts

ex-
e to

n
an

s-

ases

d at
-
is

ally

f

,

at
ue

ver,
lute
s

m-
pe-
nt
his

t
nds

that
l at

in
ng
ren-

7 is

-
pre-
d
r of
ca-

em-
ts of
l-

or
t the
Fig. 6. Radial distribution of the temperature distribution�T , case conven
tionally n∗ = 0.4 (data 1, 4, 6 atReϕ = 2.67× 106) andn∗ = 0.6 (data 2,
3, 5 atReϕ = 1.59× 106). 1, 2—experiments of Northrop [9]. Comput
tions, Eq. (34): 3—K1 = 0.0219,mx = 1.48,n = 1/6.5; 4—K1 = 0.0249,
mx = 1.34,n = 1/6. Eq. (2): 5—c∗

0 = 1, n∗ = 0.6, 6—c∗
0 = 1, n∗ = 0.7.

tive d�T /dx with the experiments atx = 0.35, . . . ,0.45.
It should be mentioned that the correlation of Eq. (2) w
the experiments is observed only atn∗ = −1.5, but not at
n∗ = −0.2, as suggested in the work of Northrop [9].

On the face of it, differences in distributions of�T in
Fig. 4 atx � 0.6 obtained from Eqs. (2) and (34) seem
be not too essential. However, it is evident that the Nus
numbers are sensitive to the choice of the parametersK1 and
mx . Values ofNu from Eqs. (3), (7) atReϕ = 1.08× 106

show quite a good agreement with the experiments
lower curve 4 in Fig. 5). However, the experimental po
for Nu at x ≈ 0.4 corresponds to the laminar flow, and
agreement with it means that the predicted dependen
should be considered underestimated. Confirming this
is the upper curve 4 forReϕ = 2.65× 106, where inadequat
model (3), (7) results in an essential underestimation of
calculations atx � 0.7 as compared with experiments, wi
this underestimation being not “compensated” with an ins
ficient development of the turbulent flow in the experime
(i.e., the turbulent flow is already developed atx ≈ 0.4).

Again, an improvement of the agreement with the
perimental data for the Nusselt number is achieved du
Eq. (9), with the distributions�T being modeled using
Eq. (34). ParametersK1 and mx in Eq. (34) were chose
based on the necessity of an agreement of the predicted
experimental values ofNu.

A calculation of the Nusselt number from Eq. (3) u
ing the Dorfman’s method (Eq. (5)) atn∗ = −0.2 leads to
obtaining the noticeably overestimated values ofNu in com-
parison with the experiments (curve 5 in Fig. 5).

Shown in Figs. 6, 7 are the results of the quite close c
conventionallyn∗ = 0.4 andn∗ = 0.6. For Reϕ = 1.59 ×
106, a good agreement with the experiments is attaine
n = nT = 1/6.5; for Reϕ = 2.67×106, it is necessary to em
ploy valuesn = nT = 1/6 (see lines 3 in Fig. 7). An analys
of the distributions of the temperature head�T in Fig. 6
at x = 0.3, . . . ,0.6 shows that indeed the valuen∗ = 0.6

at c∗

0 = 1 in Eq. (2) correlates well with the experiments
d

Fig. 7. Radial distribution of the Nusselt number, case convention
n∗ = 0.4 (upper group of lines,Reϕ = 2.67 × 106) and n∗ = 0.6
(lower group of lines, Reϕ = 1.59 × 106). 1, 2—experiments o
Northrop [9]; 3, 4—present predictions atn = nT = 1/6 (upper group)
andn = nT = 1/6.5 (lower group). Lower line 3—Eq. (9),K1 = 0.0219,
mx = 1.48; upper line 3—Eq. (9),K1 = 0.0249,mx = 1.34. Lower line
4—Eqs. (3), (7),K1 = 0.0227, n∗ = 0.6; upper line 4—Eqs. (3), (7)
K1 = 0.0262,n∗ = 0.7. Line 5—Eqs. (3), (5),K1 = 0.0202,n∗ = 0.4.

at Reϕ = 1.59× 106. At the same time, the experiments
Reϕ = 2.67× 106 can bee simulated better with the val
n∗ = 0.7, but notn∗ = 0.4.

Eq. (34) allows obtaining distributions of�T with an er-
ror not exceeding the error of Eq. (2) (see Fig. 6). Howe
Eq. (34) provides an essential radial variation of the abso
value of the derivative d�T /dx and thus more opportunitie
for a selection of the parametersK1 andmx .

An analysis of the distributions of the local Nusselt nu
bers in Fig. 7 shows that Eqs. (9) together with (34) at s
cially fitted valuesK1 andmx provide a better agreeme
with the experiment than Eqs. (3) together with (7) do. T
is especially obvious for the higher valuesReϕ = 2.67×106.
Inexactitudes of Eq. (3) atK1 computed from Eq. (5) are no
so essential (see curve 6 in Fig. 7). This fact correspo
to the earlier obtained conclusions of Shevchuk [12,13]
the errors of the Dorfman’s (1963) method are essentia
n∗ � 0.

It is also necessary to mention that the predictions
Figs. 3, 5 and 7 correlate well with calculations of O
and Owen [15] done, as indicated above, using a diffe
tial method.

The characteristic feature of data in Figs. 3, 5 and
the “dip” of the experimental values ofNu in the work of
Northrop [9] at the pointx ≈ 0.73 as compared to predic
tions. The same inconsistency of the experiments and
dictions at the positionx ≈ 0.73 is pointed out by Ong an
Owen [15]; apparently, the reason is the systematic erro
the experimental measurements of Northrop [9] in this lo
tion.

It is necessary to emphasize that the velocity and t
perature profiles were not measured in the experimen
Northrop [9], therefore the fulfilled estimation of the va
ues of the exponentsn is grounded on the oblique data f
the Nusselt numbers. Nevertheless, taking into accoun
interrelation of the valuesn and the exponentnR at the

Reynolds number in Eq. (3) forNu under condition (1) or
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(2) (see Table 1), it is possible to deem the analysis g
justified. Apparently, the rate of the radial increase of
Nusselt numbersNu in Figs. 3, 5 and 7 corresponds to t
smaller values ofnR andm and, consequently, to the high
values of n, that is confirmed by the computations pr
sented here. Besides, it is interesting to point out that El
and Eaton (1997), who measured experimentally the t
perature distributions in the boundary layer at the nega
value of d�T /dx in the caseqw = const (orn∗ ≈ −0.6),
obtained valuesn = 1/4, . . . ,1/5 for the temperature pro
files atReω = 106. This is consistent with the results of th
presents research atn∗ = −0.2.

7. Conclusions

A new analytical solution of the problem under consid
ation given by Eqs. (9) for the Nusselt number and (34)
�T provides much better accuracy of the agreement with
experiments in the majority of the cases considered, than
previously known solution (2) and (3) do. The solution
the inverse problem presented by Eqs. (9), (34) compr
much wider range of possible boundary conditions for
surface temperature distribution�T than the solution of the
direct problem (2), (3). It should be expected that the s
tions analogous to Eqs. (9), (34) can be found for a var
of the other problems of fluid flow and heat transfer.
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